

БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ХАНТЫ -МАНСИЙСКОГО АВТОНОМНОГО ОКРУГА – ЮГРЫ «КОГАЛЫМСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

УТВЕРЖДЕНА приказом директора БУ «Когалымский политехнический колледж» № 247 от 31 августа 2020.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.09 ХИМИЯ

программы подготовки квалифицированных рабочих, служащих

15.01.36. Дефектоскопист

Форма обучения	очная
Курс	1
Семестр	2

Программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Химия», в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии среднего профессионального образования 15.01.36. Дефектоскопист

(письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 №06-259).

Организация-разработчик: БУ «Когалымский политехнический колледж»

PACCMOTPEHO		
на заседании методичес	кого объеди	нения естественнонаучного цикла
Протокол № \mathcal{I} от « \mathcal{L} »	ucoed	2040r.
Руководитель МО	3 ittly	/3.М. Татарко/
	подпись	
СОГЛАСОВАНО	,	
Педагог- библиотекарь	_A	/ <u>Л.Н. Родионова</u> /
	подпись	

СОГЛАСОВАНО методическим советом Председатель МС <u>Лювина</u> / Е.А. Левина / подпись

Разработчики:

Сибанбаева Ботагоз Хайретдиновна, преподаватель БУ «Когалымский политехнический колледж»

ОГЛАВЛЕНИЕ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	
2. СТРУКТУРА И ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	21
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	23

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ Химия

1.1. Область применения рабочей программы

Рабочая программа учебной дисциплины является частью программы подготовки квалифицированных рабочих и служащих (далее ППКРС) в соответствии с ФГОС по профессии СПО

15.01.36 «Дефектоскопист по визуальному и измерительному контролю. Дефектоскопист по капиллярному контролю. Дефектоскопист по магнитному контролю»

базовой подготовки, а также интересов работодателей в части освоения дополнительных видов профессиональной деятельности, обусловленных требованиями к компетенции WSR и является составной частью данной профессиональной программы

1.2. Место дисциплины в структуре основной профессиональной образовательной программы:

Учебная дисциплина «Химия» является учебным предметом по выбору из обязательной предметной области «Естественные науки» ФГОС среднего общего образования. В профессиональных образовательных организациях, реализующих образовательную программу среднего общего образования в пределах освоения ОПОП СПО на базе основного общего образования, учебная дисциплина «Химия» изучается в общеобразовательном цикле учебного ОПОП СПО на базе основного общего образования с получением среднего общего образования (ППКРС, ППССЗ).

1.3. Цели и задачи учебной дисциплины - требования к результатам освоения учебной дисциплины:

Освоение содержания учебной дисциплины «Химия», обеспечивает достижение студентами следующих результатов:

• личностных:

- чувство гордости и уважения к истории и достижениям отечественной химической науки; химически грамотное поведение в профессиональной деятельности и в быту при обращении с химическими веществами, материалами процессами;
- готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли химических компетенций в этом; умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развитияв выбранной профессиональной деятельности;

• метапредметных:

- использование различных видов познавательной деятельности и основныхинтеллектуальных операций (постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявленияпричинно-следственных связей, поиска аналогов, формулирования выводов) для решения поставленной задачи, применение основных методов познания (наблюдения, научного эксперимента) для изучения различных сторон химических объектов и
- (наблюдения, научного эксперимента) для изучения различных сторон химических объектов и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;
- использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов профессиональной сфере; Экзамен проводится по решению профессиональной образовательной организации либо по желаниюстудентов при изучении учебной дисциплины «Химия» как профильной учебной

дисциплины. • предметных:

- иметь сформированные представления о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;
- —владение основополагающими химическими понятиями, теориями, законамии закономерностями; уверенное пользование химической терминологией исимволикой;
- владение основными методами научного познания, используемыми в химии:наблюдением, описанием, измерением, экспериментом; умение обрабатывать,объяснять результаты

проведенных опытов и делать выводы; готовность испособность применять методы познания при решении практических задач;

- сформированность умения давать количественные оценки и производитьрасчеты по химическим формулам и уравнениям;
- владение правилами техники безопасности при использовании химических веществ;
- сформированность собственной позиции по отношению к химической информации, получаемой из разных источников.

1.4. Ведущие педагогические технологии, используемые преподавателем:

Рабочая программа предусматривает использование преподавателем технологии личностно – ориентированного образования, информационных технологий, технологии проектной деятельности, компетентностный подход.

1.5. Рекомендуемое количество часов на освоение программы дисциплины: максимальной учебной нагрузки обучающегося 114(50/48/16) часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося **114(50/48/16)** часов;.

2. СТРУКТУРА И ПРИМЕРНОЕ СОДЕРЖАНИЕ УЧЕБНОЙДИСЦИПЛИНЫ 2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Количество часов
Максимальная учебная нагрузка (всего)	114(50/48/16)
Обязательная аудиторная учебная нагрузка (всего)	114 (48/16)
в том числе:	
лабораторные занятия	16 (8/8)
практические занятия	48 (30/18)
Итоговая аттестация в форме дифференцированного зачет	га

2.2.Тематический план и содержание учебной дисциплины «Химия»

Наименование	Содержание учебного материала, лабораторные и практические работы,	Объем	Уровень
разделов и тем	самостоятельная работа обучающихся	часов	освоения
1	2	3	4
1 семестр		68	
Раздел 1. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ			
Введение	Научные методы познания веществ и химических явлений. Роль эксперимента и теории в химии. Моделирование химических процессов.	2	1
Тема 1.1. Основные		2	
понятия и законы химии			
Тема 1.1.1. Основные понятия химии.	Вещество. Атом. Молекула. Химический элемент. Аллотропия. Простые и сложные вещества. Качественный и количественный состав веществ. Химические знаки и формулы. Относительные атомная и молекулярная массы. Количество вещества.	1	1
Тема 1.1.2. Основные	Стехиометрия. Закон сохранения массы веществ. Закон постоянства состава веществ	1	1
законы химии.	молекулярной структуры. Закон Авогадро и следствия их него.		
	Практическая работа №1 Расчетные задачи на нахождение относительной молекулярной массы, определение массовой доли химических элементов в сложном веществе.	2	2
	Демонстрации. Модели атомов химических элементов. Модели молекул простых и сложных веществ (шаростержневые и Стюарта-Бриглеба). Коллекция простых и сложных веществ. Некоторые вещества количеством 1 моль. Модель молярного объема газов. Аллотропия фосфора, кислорода, олова.		
	Профильные и профессионально значимые элементы содержания. Аллотропные модификации углерода (алмаз, графит), кислорода (кислород, озон), олова (серое и белое олово). Понятие о химической технологии, биотехнологии и нанотехнологии.		
Тема 1.2.			
Периодический закон			
и Периодическая			
система химических			
элементов Д.И.			
Менделеева и			
строение атома			
Тема 1.2.1.	Периодический закон Д.И. Менделеева. Открытие Д.И. Менделеевым Периодического закона.	2	1

Периодический закон Д.И. Менделеева.	Периодический закон в формулировке Д.И. Менделеева. Периодическая таблица химических элементов – графическое отображение периодического закона. Структура периодической таблицы: периоды (малые и большие), группы (главная и побочная).		
	Лабораторная работа №1.Моделирование построения Периодической таблицы химических элементов	2	2
Тема 1.2.2. Строение атома и периодический закон Д.И. Менделеева.	Атом — сложная частица. Ядро (протоны и нейтроны) и электронная оболочка. Изотопы. Строение электронных оболочек атомов элементов малых периодов. Особенности строения электронных оболочек атомов элементов больших периодов (переходных элементов). Понятие об орбиталях. S-, p- и d-Орбитали. Электронные конфигурации атомов химических элементов. Современная формулировка периодического закона. Значение периодического закона и периодической системы химических элементов Д.И. Менделеева для развития науки и понимания химической картины мира.	2	1
	Демонстрации. Различные формы Периодической системы химических элементов Д.И. Менделеева. Динамические таблицы для моделирования Периодической системы. Электризация тел и их взаимодействие. Профильные и профессионально значимые элементы содержания. Радиоактивность. Использование радиоактивных изотопов в технических целях. Рентгеновское излучение и его использование в технике и медицине. Моделирование как метод прогнозирования ситуации на производстве.		
Тема 1.3. Строение веществаWSR			
Тема 1.3.1. Типы химической связи.	Ионная химическая связь. Катионы, их образование из атомов в результате процесса окисления. Анионы, их образование из атомов в результате процесса восстановления. Ионная связь, как связь между катионами и анионами за счет электростатического притяжения. Классификация ионов: по составу, знаку заряда, наличию гидратной оболочки. Ионные кристаллические решетки. Свойства веществ с ионным типом кристаллической решетки. Ковалентная химическая связь. Механизм образования ковалентной связи (обменный и донорно-акцепторный). Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи. Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками. Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь. Физические свойства металлов. Водородная связь.	2	1
	Практическая работа №2. Ионная, ковалентная химическая связь.	2	

	Агрегатные состояния веществ. Твердое, жидкое и газообразное состояния веществ. Переход вещества из одного агрегатного состояния в другое. Чистые вещества и смеси. Понятие о смеси веществ. Гомогенные и гетерогенные смеси. Состав смесей: объемная и массовая доли компонентов смеси, массовая доля примесей.	1	1
Тема1.3.2. Дисперсные системы.	Понятие о дисперсной системе. Дисперсная фаза и дисперсионная среда. Классификация дисперсных систем. Понятие о коллоидных системах.	1	
	Практическая работа №3.Дисперсные системы. Чистые вещества и смеси	2	2
	Лабораторная работа №2. Приготовление суспензии карбоната кальция в воде. Получение эмульсии моторного масла. Ознакомление со свойствами дисперсных систем.	2	2
	Демонстрации. Модель кристаллической решетки хлорида натрия. Образцы минералов с ионной кристаллической решеткой: кальцита, галита. Модели кристаллических решеток «сухого льда» (или иода), алмаза, графита (или кварца). Приборы на жидких кристаллах. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис. Эффект Тиндаля.		
	Профильные и профессионально значимые элементы содержания. Полярность связи и полярность молекулы. Конденсация. Текучесть. Возгонка. Кристаллизация. Сублимация и десублимация. Аномалии физических свойств воды. Жидкие кристаллы. Минералы и горные породы как природные смеси. Эмульсии и суспензии. Золи (в том числе аэрозоли) и гели. Коагуляция. Синерезис.		
Тема 1.4. Вода. Растворы. Электролитическая диссоциация WSR			
Тема1.4.1.Вода. Растворы. Растворение	Вода как растворитель. Растворимость веществ. Насыщенные, ненасыщенные, пересыщенные растворы. Зависимость растворимости газов, жидкостей и твердых веществ от различных факторов. Массовая доля растворенного вещества.	1	2
Тема 1.4.2. Электролитическая диссоциация.	Электролиты и неэлектролиты. Электролитическая диссоциация. Механизмы электролитической диссоциации для веществ с различными типами химической связи. Гидратированные и негидратированные ионы. Степень электролитической диссоциации. Сильные и слабые электролиты. Основные положения теории электролитической диссоциации. Кислоты, основания и соли как электролиты.	1	2

	Harrywania nahara Na/5 Daaryyyy yayyyana ahyaya Hayyananyayya naaraan aasaa	4	2
	Практическая работа №4/5. Реакции ионного обмена. Приготовление раствора заданной	4	2
	концентрации.		
	Профильные и профессионально-значимые элементы содержания. Растворение как физико-химический процесс. Тепловые эффекты при растворении. Кристаллогидраты. Решение		
	задач на массовую долю растворенного вещества. Применение воды в технических целях.		
	Жесткость воды и способы ее устранения. Минеральные воды.		
	Демонстрации. Растворимость веществ в воде. Собирание газов методом вытеснения воды.		
	Растворение в воде серной кислоты и солей аммония. Образцы кристаллогидратов. Изготовление		
	гипсовой повязки. Испытание растворов электролитов и неэлектролитов на предмет		
	диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от		
	разбавления раствора. Движение окрашенных ионов в электрическом поле. Приготовление		
	жесткой воды и устранение ее жесткости. Иониты. Образцы минеральных вод различного		
	назначения.		
Тема 1.5.			
Классификация			
неорганических			
соединений и их			
свойства			
Тема 1.5.1. Кислоты,	Кислоты как электролиты, их классификация по различным признакам. Химические свойства	2	2
основания и их	кислот в свете теории электролитической диссоциации. Особенности взаимодействия		
свойства.	концентрированной серной и азотной кислот с металлами. Основные способы получения		
	кислоты. Основания и их свойства. Основания как электролиты, их классификация по		
	различным признакам. Химические свойства оснований в свете теории электролитической		
	диссоциации. Разложение нерастворимых в воде оснований. Основные способы получения		
	оснований.		
	Практическая работа №6. Свойства кислот, оснований	2	2
Тема 1.5.2. Соли,	Соли как электролиты. Соли средние, кислые и основные. Химически свойства солей в свете	2	2
оксиды и их	теории электролитической диссоциации. Способы получения солей. Гидролиз солей.		
свойства.	Оксиды и их свойства. Солеобразующие и несолеобразующие оксиды. Основные, амфотерные		
	и кислотные оксиды. Зависимость характера оксида от степени окисления образующего его		
	металла. Химические свойства оксидов. Получение оксидов.		
	Практическая работа №7. Свойства солей, оксидов.	2	2

	T		
	Лабораторная работа №3. Испытание растворов кислот индикаторами.	2	2
	Взаимодействие металлов с кислотами.		
	Взаимодействие кислот с оксидами металлов.		
	Взаимодействие кислот с основаниями.		
	Взаимодействие кислот с солями.		
	Испытание растворов щелочей индикаторами.		
	Взаимодействие щелочей с солями.		
	Разложение нерастворимых оснований.		
	Взаимодействие солей с металлами.		
	Взаимодействие солей друг с другом.		
	Гидролиз солей различного типа.		
	Демонстрации. Взаимодействие азотной и концентрированной серной кислот с металлами.		
	Горение фосфора и растворение продукта горения в воде. Получение и свойства амфотерного		
	гидроксида. Необратимый гидролиз карбида кальция. Обратимый гидролиз солей различного		
	типа.		
	Профильные и профессионально значимые элементы содержания. Правила разбавления		
	серной кислоты. Использование серной кислоты в промышленности. Едкие щелочи, их		
	использование в промышленности. Гашеная и негашеная известь, ее применение в строительстве.		
	Гипс и алебастр, гипсование.		
	Понятие о рН раствора. Кислотная, щелочная, нейтральная среды растворов.		
Тема 1.6. Химические			
реакции Тема 1.6.1.	Реакции соединения, разложения, замещения, обмена. Каталитические реакции. Обратимые и	1	2
		1	2
Классификация	необратимые реакции. Гомогенные и гетерогенные реакции. Экзотермические и		
химических реакций.	эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения.		
	Окислительно-восстановительные реакции. Степень окисления. Окислитель и		
	восстановление. Восстановитель и окисление. Метод электронного баланса для составления		
Torra 162 Crass acres	уравнений окислительно-восстановительных реакций.	1	2
Тема 1.6.2. Скорость	Понятие о скорости химических реакций. Зависимость скорости химических реакций от	1	2
химических реакций.	различных факторов: природы реагирующих веществ, их концентрации, температуры,		
	поверхности соприкосновения и использования катализаторов. Обратимость химических		
	реакций. Обратимые и необратимые реакции. Химическое равновесие и способы его смещения.		
	Реакция замещения меди железом в растворе медного купороса. Реакции, идущие с образованием		
	осадка, газа или воды. Зависимость скорости взаимодействия соляной кислоты с металлами от их		
	природы. Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации.		
	Зависимость скорости взаимодействия оксида меди(II) с серной кислотой от температуры.		

	Практическая работа №8/9. Решение задач и упражнений.	4	2
	Лабораторная работа №4.	2	2
	Реакция замещения меди железом в растворе медного купороса.		
	Реакции, идущие с образованием осадка, газа или воды.		
	Зависимость скорости взаимодействия соляной кислоты с металлами от их природы.		
	Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации.		
	Зависимость скорости взаимодействия оксида меди (II) с серной кислотой от температуры.		
	Демонстрации. Примеры необратимых реакций, идущих с образованием осадка, газа или воды.		
	Зависимость скорости реакции от природы реагирующих веществ. Взаимодействие растворов		
	серной кислоты с растворами тиосульфата натрия различной концентрации и температуры.		
	Модель кипящего слоя. Зависимость скорости химической реакции от присутствия катализатора на		
	примере разложения пероксида водорода с помощью диоксида марганца и каталазы. Модель		
	электролизера. Модель электролизной ванны для получения алюминия. Модель колонны синтеза		
	аммиака		
	Профильные и профессионально значимые элементы содержания. Понятие об электролизе.		
	Электролиз расплавов. Электролиз растворов. Электролитическое получение алюминия.		
	Практическое применение электролиза. Гальванопластика. Гальваностегия. Рафинирование		
	цветных металлов.		
	Катализ. Гомогенные и гетерогенные катализаторы. Промоторы. Каталитические яды.		
	Ингибиторы.		
	Производство аммиака: сырье, аппаратура, научные принципы.		
Тема 1.7. Металлы и		7	
неметаллы			
Тема 1.7.1. Металлы.	Особенности строения атомов и кристаллов. Физические свойства металлов. Классификация	2	1
Неметаллы.	металлов по различным признакам. Химические свойства металлов. Электрохимический ряд		
	напряжений металлов. Металлотермия.		
	Общие способы получения металлов. Понятие о металлургии. Пирометаллургия,		
	гидрометаллургия и электрометаллургия. Сплавы черные и цветные. Неметаллы. Особенности		
	строения атомов. Неметаллы – простые вещества. Зависимость свойств галогенов от их		
	положения в Периодической системе. Окислительные и восстановительные свойства неметаллов		
	в зависимости от их положения в ряду электроотрицательности. Закалка и отпуск стали.		
	Ознакомление со структурами серого и белого чугуна. Распознавание руд железа.		
	Практическая работа№10/11	4	2
	Получение, собирание и распознавание газов.		
	Решение экспериментальных задач.		
	12		
	12		

	Практическая работа№12.	2	2
	Закалка и отпуск стали. Ознакомление со структурами серого и белого чугуна.		
	Распознавание руд железа.		
	Демонстрации. Коллекция металлов. Взаимодействие металлов с неметаллами (железа, цинка и		
	алюминия с серой, алюминия с иодом, сурьмы с хлором, горение железа в хлоре). Горение		
	металлов. Алюминотермия.		
	Коллекция неметаллов. Горение неметаллов (серы, фосфора, угля). Вытеснение менее активных		
	галогенов из растворов их солей более активными галогенами.		
	Модель промышленной установки для производства серной кислоты. Модель печи для обжига		
	известняка. Коллекции продукций силикатной промышленности (стекла, фарфора, фаянса,		
	цемента различных марок и др.)		
	Профильные и профессионально значимые элементы содержания. Коррозия металлов:		
	химическая и электрохимическая. Зависимость скорости коррозии от условий окружающей		
	среды. Классификация коррозии металлов по различным признакам. Способы защиты металлов		
	от коррозии. Производство чугуна и стали. Получение неметаллов фракционной перегонкой		
	жидкого воздуха и электролизом растворов или расплавов электролитов. Силикатная		
	промышленность. Производство серной кислоты.		
Раздел 2.			
ОРГАНИЧЕСКАЯ			
ХИМИЯ			
Тема 2.1. Основные			
понятия органической			
химии и теория			
строения органических			
соединений			
Тема 2.1.1. Предмет	Природные, искусственные и синтетические органические вещества. Сравнение органических	1	1
органической химии.	веществ с неорганическими.		
-	Теория строения органических соединений А.М. Бутлерова. Основные положения теории		
	химического строения. Изомерия и изомеры. Химические формулы и модели молекул в		
	органической химии		
Тема 2.1.2.	Классификация веществ по строению углеродного скелета и наличию функциональных групп.	1	1
Классификация	Гомологи и гомология. Начала номенклатуры IUPAC		
органических веществ.			
Тема 2.1.3.	Реакции присоединения (гидрирования, галогенирования, гидрогалогенирования, гидратации).	2	1
Классификация	Реакции отщепления (дегидрирования, дегидрогалогенирования, дегидратации). Реакции		

	Практическая работа №13. Решение задач и упражнений.	2	2
	Демонстрации. Модели молекул гомологов и изомеров органических соединений. Качественное		
	обнаружение углерода, водорода и хлора в молекулах органических соединений.		
	Профильные и профессионально значимые элементы содержания. Понятие о субстрате и		
	реагенте. Реакции окисления и восстановления органических веществ. Сравнение классификации		
	соединений и классификации реакций в неорганической и органической химии.		
Тема 2.2.			
Углеводороды и их			
природные			
источники			
Гема 2.2.1.Алканы	Алканы: гомологический ряд, изомерия и номенклатура алканов. Химические свойства алканов	2	1
	(метана, этана): горение, замещение, разложение, дегидрирование. Применение алканов на основе свойств.		
	Практическая работа №14 Решение задач и упражнений.	2	2
Гема 2.2.2. Алкены	Алкены. Этилен, его получение (дегидрированием этана, деполимеризацией	2	1
	полиэтилена).Гомологический ряд, изомерия, номенклатура алкенов. Химические свойства		
	этилена: горение, качественные реакции (обесцвечивание бромной воды и раствора перманганата		
	калия), гидратация, полимеризация. Применение этилена на основе свойств.		
	Практическая работа №15. Решение задач и упражнений. Контрольная работа.	2	2
2 семестр.			
Гема 2.2.3. Диены и	Понятие о диенах как углеводородах с двумя двойными связями. Сопряженные диены.	2	1
каучуки.	Химические свойства бутадиена-1,3 и изопрена: обесцвечивание бромной воды и полимеризация		
	в каучуки. Натуральный и синтетические каучуки. Резина.		
Гема 2.2.4. Алкины.	Ацетилен. Химические свойства ацетилена: горение, обесцвечивание бромной воды,	2	1
	присоединение хлороводорода и гидратация. Применение ацетилена на основе свойств.		
	Межклассовая изомерия с алкадиенами.		
	Лабораторная работа №1. Изготовление моделей молекул органических веществ.	2	
Тема 2.2.4. Арены.	Бензол. Химические свойства бензола: горение, реакции замещения (галогенирование,	2	1
P	нитрование). Применение бензола на основе свойств.		
	Практическая работа №1. Решение задач и упражнений.	2	2
	Природные источники углеводородов. Природный газ: состав, применение в качестве топлива.	2	1
	Нефть. Состав и переработка нефти. Перегонка нефти. Нефтепродукты.	-	
	Лабораторная работа №2. Ознакомление с коллекцией образцов нефти и продуктов ее	2	2
	переработки. Ознакомление с коллекцией каучуков и образцами изделий из резины.	_	4
	перерасотки. Ознакомпение с коппекцией каучуков и образцами изделии из резины.		

	,		
	П		
	Демонстрации. Горение метана, этилена, ацетилена. Отношение метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной воде. Получение этилена реакцией дегидратации этанола, ацетилена — гидролизом карбида кальция. Разложение каучука при нагревании, испытание продуктов разложения на непредельность. Коллекция образцов нефти и нефтепродуктов. Коллекция «Каменный уголь и продукция коксохимического производства».		
	Профильные и профессионально значимые элементы содержания. Правило В.В. Марковникова. Классификация и назначение каучуков. Классификация и назначение резин. Вулканизация каучука. Получение ацетилена пиролизом метана и карбидным способом. Реакция полимеризации винилхлорида. Поливинилхлорид и его применение. Тримеризация ацетилена в бензол. Понятие об экстракции. Восстановление нитробензола в анилин. Гомологический ряд аренов. Толуол. Нитрование толуола. Тротил.		
	Основные направления промышленной переработки природного газа. Попутный нефтяной газ, его переработка. Процессы промышленной переработки нефти: крекинг, риформинг. Октановое число бензинов и цетановое число дизельного топлива.		
Тема 2.3. Кислород-		16	
содержащие			
органические соединения			
Тема 2.3.1. Спирты.	Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Понятие о предельных одноатомных спиртах. Химические свойства этанола: взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основе свойств. Алкоголизм, его последствия и предупреждение. Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение глицерина.	1	1
Тема 2.3.2. Фенол.	Физические и химические свойства фенола. Взаимное влияние атомов в молекуле фенола: взаимодействие с гидроксидом натрия и азотной кислотой. Применение фенола на основе свойств.	1	1
Тема 2.3.3.	Понятие об альдегидах. Альдегидная группа как функциональная. Формальдегид и его свойства:	1	1
Альдегиды.	окисление в соответствующую кислоту, восстановление в соответствующий спирт. Получение альдегидов окислением соответствующих спиртов. Применение формальдегида на основе его свойств.		
	15		

Тема 2.3.4.	Понятие о карбоновых кислотах. Карбоксильная группа как функциональная. Гомологический		1
Карбоновые кислоты.	ряд предельных одноосновных карбоновых кислот. Получение карбоновых кислот окислением		
	альдегидов. Химические свойства уксусной кислоты: общие свойства с минеральными кислотами		
	и реакция этерификации. Применение уксусной кислоты на основе свойств. Высшие жирные		
	кислоты на примере пальмитиновой и стеариновой.		
	Практическая работа №3/4. Решение задач и упражнений.	4	2
Тема 2.3.5. Сложные	Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение.		1
эфиры. Жиры,	Применение сложных эфиров на основе свойств.		
	Жиры как сложные эфиры. Классификация жиров. Химические свойства жиров: гидролиз и		
	гидрирование жидких жиров. Применение жиров на основе свойств. Мыла.		
Тема 2.3.6. Углеводы	Углеводы, их классификация: моносахариды (глюкоза, фруктоза), дисахариды (сахароза) и	1	1
	полисахариды (крахмал и целлюлоза).		
	Глюкоза – вещество с двойственной функцией – альдегидоспирт. Химические свойства глюкозы:		
	окисление в глюконовую кислоту, восстановление в сорбит, спиртовое брожение. Применение		
	глюкозы на основе свойств.		
	Значение углеводов в живой природе и жизни человека. Понятие о реакциях поликонденсации и		
	гидролиза на примере взаимопревращений: глюкоза — полисахарид.		
	Практическая работа№ 5/6. Решение задач и упражнений.	4	2
	Демонстрации. Окисление спирта в альдегид. Качественные реакции на многоатомные спирты.		
	Растворимость фенола в воде при обычной температуре и при нагревании. Качественные реакции		
	на фенол. Реакция серебряного зеркала альдегидов и глюкозы. Окисление альдегидов и глюкозы		
	в кислоту с помощью гидроксида меди(II). Качественная реакция на крахмал. Коллекция		
	эфирных масел.		
	Лабораторная работа №3. Растворение глицерина в воде и взаимодействие с гидроксидом меди	2	2
	(II). Свойства уксусной кислоты, общие со свойствами минеральных кислот. Доказательство		
	непредельного характера жидкого жира. Взаимодействие глюкозы и сахарозы с гидроксидом		
	меди (II). Качественная реакция на крахмал.		

	Профильные и профессионально значимые элементы содержания. Метиловый спирт и его использование в качестве химического сырья. Токсичность метанола и правила техники безопасности при работе с ним. Этиленгликоль и его применение. Токсичность этиленгликоля и правила техники безопасности при работе с ним. Получение фенола из продуктов коксохимического производства и из бензола. Поликонденсация формальдегида с фенолом в фенолоформальдегидную смолу. Ацетальдегид. Понятие о кетонах на примере ацетона. Применение ацетона в технике и промышленности. Многообразие карбоновых кислот (щавелевая кислота как двухосновная, акриловая кислота как непредельная, бензойная кислота как ароматическая).		
	Пленкообразующие масла. Замена жиров в технике непищевым сырьем. Синтетические моющие средства. Молочнокислое брожение глюкозы. Кисломолочные продукты. Силосование кормов. Нитрование целлюлозы. Пироксилин.		
Тема 2.4. Азотсодержащие органические соединения. Полимеры			
Тема 2.4.1. Амины	Понятие об аминах. Алифатические амины, их классификация и номенклатура. Анилин, как органическое основание. Получение анилина из нитробензола. Применение анилина на основе свойств.	1	1
Тема 2.4.2. Аминокислоты.	Аминокислоты как амфотерные дифункциональные органические соединения. Химические свойства аминокислот: взаимодействие со щелочами, кислотами и друг с другом (реакция поликонденсации). Пептидная связь и полипептиды. Применение аминокислот на основе свойств.	1	1
	Практическая работа №7. Решение задач и упражнений.	2	2
Тема 2.4.3. Белки.	Первичная, вторичная, третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, цветные реакции. Биологические функции белков.	1	1
Тема 2.4.4. Полимеры	Белки и полисахариды как биополимеры. Пластмассы. Получение полимеров реакцией полимеризации и поликонденсации. Термопластичные и термореактивные пластмассы. Представители пластмасс. Волокна, их классификация. Получение волокон. Отдельные представители химических волокон.	1	1
	Практическая работа №8. Решение экспериментальных задач на идентификацию органических соединений.	2	2

Распознавание пластмасс и волокон.		
Лабораторная работа №4. Растворение белков в воде. Обнаружение белков в молоке и мясном	2	2
бульоне. Денатурация раствора белка куриного яйца спиртом, растворами солей тяжелых		
металлов и при нагревании.		
Практическая работа №9. Решение задач и упражнений. Дифференцированный зачет.	2	2
Демонстрации. Взаимодействие аммиака и анилина с соляной кислотой. Реакция анилина с		
бромной водой. Доказательство наличия функциональных групп в растворах аминокислот.		
Растворение и осаждение белков. Цветные реакции белков. Горение птичьего пера и шерстяной		
нити.		
Профильные и профессионально значимые элементы содержания. Аминокапроновая		
кислота. Капрон как представитель полиамидных волокон. Использование гидролиза белков в		
промышленности. Поливинилхлорид, политетрафторэтилен (тефлон). Фенолоформальдегидные		
пластмассы. Целлулоид. Промышленное производство химических волокон		
ВСЕГО:	114	

Для характеристики уровня освоения учебного материала используются следующие обозначения:

- 1. ознакомительный (узнавание ранее изученных объектов, свойств);
- 2. репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)
- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация программы дисциплины требует наличия учебного кабинета и лаборатории химии.

Оборудование учебного кабинета и лаборатории:

- посадочные места по количеству обучающихся;
- рабочее место преподавателя, оборудованное персональным компьютером с лицензионным или свободным программным обеспечением, соответствующим разделам программы и подключенным к сети Internet и средствами вывода звуковой информации;
 - демонстрационный стол;
 - вытяжной шкаф;

учебно-наглядные пособия и лабораторное оборудование: периодическая система химических элементов Д.И. Менделеева, ряд напряжений металлов, ряд электроотрицательности неметаллов, таблица растворимости солей, кислот и оснований в воде, плакаты по общей и неорганической химии; плакаты по органической химии, химическая посуда, химические реактивы, лабораторные весы и разновесы, коллекции: «Металлы», «Горные породы», «Пластмассы и волокна», модели органических веществ

3.1.2. Технические средства обучения:

- мультимедийный проектор;
- компьютер преподавателя;
- проекционный экран;
- авторский комплект компьютерных презентаций.

3.2. Информационное обеспечение обучения

3.2.1. Учебники и учебные пособия

Основные источники:

Габриелян О.С., Остроумова И.Г. Химия для профессий и специальностей технического профиля. – М.: Академия, 2017

3.2.2. Дополнительные источники:

Интернет-ресурс.

Валова (Копылова), В. Д. Аналитическая химия и физико-химические методы анализа :

практикум / В. Д. Валова (Копылова), Е. И. Паршина. - 2-е изд., стер. - Москва:

Издательско-торговая корпорация «Дашков и К°», 2020. - 198 с. - ISBN 978-5-394-03528-9. - Текст : электронный. - URL: https://znanium.com/catalog/product/1092964 (дата обращения: 22.01.2021). - Режим доступа: по подписке.

Богомолова, И. В. Неорганическая химия: учебное пособие / Богомолова И.В. - Москва: Альфа-М, ИНФРА-М, 2016. - 336 с. (ПРОФИль) ISBN 978-5-98281-187-5. - Текст: электронный. - URL: https://new.znanium.com/catalog/product/538925 (дата обращения: 23.12.2019).

Электронно – библиотечная система «Znanium.com».(Режим доступа: http://www.znanium.com)

3.3 Спецификация учебно-методического комплекса

№	Наименование	Количество	Тип носителя
1	Рабочая программа	1	Электронный
2	Стандарт по специальности	1	Электронный
3	Закон об образовании	1	Электронный
4	Комплект оценочных средств	1	Электронный
5	Раздаточный материал, примерные варианты заданий для зачёта, экзамена	100	Электронный Бумажный
6	Комплект презентаций к лекциям	1	Электронный
7	Методические рекомендации к практическим, лабораторным работам,	1	Электронный
8	Таблицы(периодическая система, табл.растворимости,электрохимичес-й ряд напр-я металлов)	25	Печатные издания

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий и лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения	Формы и методы	
(освоенные умения, усвоенные знания)	контроля и оценки	
	результатов обучения	
Умения:		
называть изученные вещества по «тривиальной» или международной номенклатурам;	устный опрос,практические занятия	
определять валентность и степень окисления химических элементов, то связи в соединениях, заряд иона, пространственное строение кристаллической решетки, характер среды в водных растворах, восстановитель, направление смещения равновесия под влияние факторов, изомеры и гомологи, принадлежность веществ к разнеорганических и органических соединений; характер взаимного вли молекулах, типы реакций в неорганической и органической химии;	занятия,лабораторные работы	
характеризовать s-, p-, J-элементы по их положению в Периодической системе Д. И. Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и свойства органических соединений (углеводородов, спиртов, фенолов, альдегидов, кетонов, карбоновых кислот, аминов, аминокислот и углеводов);	устный опрос, тестирование, лабораторные работы	
объяснять зависимость свойств химического элемента и образованных им веществ от положения в Периодической системе Д.И. Менделеева; зависимость свойств неорганических веществ от их состава и строения, природу химической связи, зависимость скорости химической реакции от различных факторов, реакционной способности органических соединений от строения их молекул;	лабораторные и практические занятия	
выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ, получению конкретных веществ, относящихся к изученным классам соединений;	лабораторные работы	
проводить расчеты по химическим формулам и уравнениям реакций;	практические занятия	
осуществлять самостоятельный поиск химической информации с использованием различных источников (справочных, научных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химич. информации и ее представления в различных формах;	самостоятельная работа	
использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для понимания глобальных проблем, стоящих перед человечеством: экологических, энергетических и сырьевых;	самостоятельная работа	
объяснения химических явлений, происходящих в природе, быту и на	индивидуальные	
производстве, экологически грамотного поведения в окружающей	творческие задания	

среде;	
оценки влияния химического загрязнения окружающей среды на	самостоятельная
организм человека и другие живые организмы, безопасной работы с	работа
веществами в лаборатории, быту и на производстве;	
определения возможности протекания химических превращений в	практические занятия,
различных условиях и оценки их последствий, распознавания и	лабораторная работа
идентификации важнейших веществ и материалов, оценки качества	
питьевой воды и отдельных пищевых продуктов, критической оценки	
достоверности химической информации, поступающей из различных	
источников.	
Знания:	
роль химии в естествознании, ее связь с другими естественными науками, значение в жизни современного общества;	тестирование
важнейшие химические понятия: вещество, химический элемент, атом,	практические
молекула, масса атомов и молекул, ион, радикал, аллотропия, нуклиды	занятия,
и изотопы, атомные s-, p-, J-орбитали, химическая связь,	тестирование,
электроотрицательность, валентность, степень окисления,	лабораторные
гибридизация орбиталей, пространственное строение молекул, моль,	работы,
молярная масса, молярный объем газообразных веществ, вещества	контрольная работа
молекулярного и немолекулярного строения, комплексные	
соединения, дисперсные системы, истинные растворы,	
электролитическая диссоциация, кислотно-основные реакции в водных	
растворах, гидролиз, окислениеивосстановление, электролиз, скорость	
химической реакции, механизм реакции, катализ, тепловой эффект	
реакции, энтальпия, теплота образования, энтропия, химическое равновесие, константа равновесия, углеродный скелет,	
равновесие, константа равновесия, углеродный скелет, функциональная группа, гомология, структурная и пространственная	
изомерия, индуктивный и мезомерный эффекты, электрофил,	
нуклеофил, основные типы реакций в неорган. и органической химии;	
основные законы химии: закон сохранения массы веществ, закон	практические занятия
постоянства состава веществ, Периодический закон Д.И. Менделеева,	npakin itoknio saimini
закон Гесса, закон Авогадро;	
основные теории химии; строения атома, химической связи,	тестирование
электролитической диссоциации, кислот и оснований, строения	практические занятия
органических и неорганических соединений (включая стереохимию),	_
химическую кинетику и химическую термодинамику;	
классификацию и номенклатуру неорганических и органических	тестирование
соединений;	
природные источники углеводородов и способы их переработки;	тестирование
вещества и материалы, широко используемые в практике: основные	лабораторные работы
металлы и сплавы, графит, кварц, минеральные удобрения,	
минеральные и органические кислоты, щелочи, аммиак, углеводороды,	
фенол, анилин, метанол, этанол, этиленгликоль, глицерин,	
формальдегид, ацетальдегид, ацетон, глюкоза, сахароза, крахмал,	
клетчатка, аминокислоты, белки, искусственные волокна, каучуки,	
пластмассы, жиры, мыла и моющие средства.	

При реализации программы у обучающихся будут сформированы общие компетенции по специальности:

Результаты (освоенные общие компетенции)	Основные показатели оценки результата	Формы и методы контроля и оценки
ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес	Демонстрация интереса к будущей профессии. Участие в мероприятиях профессиональной направленности	Интерпретация результатов наблюдений за деятельностью студента в процессе обучения и освоения профессии.
ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.	Соблюдение и выполнение функциональных обязанностей, соблюдение трудовой и технологической дисциплины. Осознание цели и задач предстоящей деятельности, качественно выполненная работа.	Наблюдение, тестирование. Проведение контроля за организацией рабочего места.
ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.	Анализ результатов деятельности, самоанализ: отчет о проделанной работе, вывод. Коррекция своей деятельности по основным этапам работы. Применение различных методов и способов для решения задач.	Интерпретация результатов наблюдений за деятельностью студента в процессе обучения и освоения профессии.
ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.	Эффективный поиск необходимой информации. Нахождение и использование различных источников информации для эффективного выполнения профессиональных задач.	Наблюдение и оценка достижений деятельности студента на практических занятиях.
ОК 5. Использовать информационно-коммуникацион ные технологии в профессиональной деятельности.	Изучение и использование новейших технологий при выполнении заданий. Умение грамотно пользоваться Интернет – ресурсами.	Наблюдение и оценка достижений деятельности студентов на практических занятиях.
ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.	Правильное выстраивание межличностных отношений в коллективе, с клиентами. Четкое распределение обязанностей между членами коллектива	Наблюдение и оценка достижений деятельности студента на практических занятиях.
ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.	Правильное выстраивание межличностных отношений в коллективе, с потребителями.	Наблюдение и оценка достижений деятельности студентов на практических занятиях.
ОК 8 Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации	Анализ результатов деятельности, самоанализ: отчет о проделанной работе, вывод. Коррекция своей деятельности по основным этапам работы. Применение различных методов и способов	Наблюдение и оценка достижений деятельности студентов на практических занятиях.

	для решения задач.	
ОК 9. Ориентироваться в	Анализ результатов деятельности,	Наблюдение и оценка
условиях частой смены	самоанализ: отчет о проделанной работе,	достижений
технологий в профессиональной	вывод.	деятельности студентов
деятельности.	Коррекция своей деятельности по	на практических
	основным этапам работы.	занятиях.
	_	

ЛИСТ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ, ВНЕСЕННЫХ В РАБОЧУЮ ПРОГРАММУ

№ изменения, дата внесения изменения; № страницы с изменением;			
БЫЛО	СТАЛО		
Основание:			
Подпись лица внесшего изменения			